Numerical Approximation of Fractal Dimension of Gaussian Stochastic Processes
نویسندگان
چکیده
منابع مشابه
Stochastic Approximation of Score Functions for Gaussian Processes
We discuss the statistical properties of a recently introduced unbiased stochastic approximation to the score equations for maximum likelihood calculation for Gaussian processes. Under certain conditions, including bounded condition number of the covariance matrix, the approach achieves O(n) storage and nearly O(n) computational effort per optimization step, where n is the number of data sites....
متن کاملL-type estimators of the fractal dimension of locally self-similar Gaussian processes
This paper is devoted to the introduction of a new class of consistent estimators of the fractal dimension of locally self-similar Gaussian processes. These estimators are based on linear combinations of empirical quantiles (L−statistics) of discrete variations of a sample path over a discrete grid of the interval [0, 1]. We derive the almost sure convergence for these estimators and prove the ...
متن کاملEstimation of Fractal Dimension for a Class of Non-gaussian Stationary Processes and Fields
We present the asymptotic distribution theory for a class of incrementbased estimators of the fractal dimension of a random field of the form g{X(t)}, where g :R →R is an unknown smooth function and X(t) is a real-valued stationary Gaussian field on R, d = 1 or 2, whose covariance function obeys a power law at the origin. The relevant theoretical framework here is “fixed domain” (or “infill”) a...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولFractal Dimension of Graphs of Typical Continuous Functions on Manifolds
If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics
سال: 2014
ISSN: 2152-7385,2152-7393
DOI: 10.4236/am.2014.512169